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Two-dimensional model of a reaction-diffusion system as a typewriter

Andrzej L. Kawczyński and Bartłomiej Legawiec
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

~Received 29 May 2001; published 9 October 2001!

Pattern formation is a common phenomenon, which appears in biological systems, especially in cell differ-
entiation processes. The proper level for understanding the creation of patterns seems to be a physicochemical
description. The most fundamental models should be based on systems, in which only chemical reactions and
diffusion transport occur~reaction-diffusion systems!. In order to present a richness of patterns, we show here
the asymptotic patterns in the form of capital letters obtained in two-dimensional reaction-diffusion systems
with zero-flux boundary conditions. All capital letters are obtained in the same model, but initial conditions and
sizes of the systems are different for each letter. The chemical model consists of elementary reactions and is
realistic. It can be realized experimentally in continuous-flow unstirred reactor with an enzymatic reaction
allosterically inhibited by an excess of its reactant and product.
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In 1952 Alan Turing pointed out that reaction-diffusio
systems might be treated as minimal models of the pat
formation in biological systems@1#. He showed that station
ary periodical distributions of variables~reactant concentra
tions! appeared as asymptotic solutions to nonlinear pa
differential equations of the parabolic type~reaction-
diffusion systems!. Almost forty years later the Turing pat
terns have been found in open, continuous-flow, unstir
reactors~CFUR!, in which the chloride–iodide–malonic aci
reaction ~CIMA ! occurred@2,3#. Meantime target pattern
~traveling concentric rings! @4# and spiral waves@5# have
been observed in the Belousov-Zhabotinsky~BZ! reaction in
closed systems. Now, various patterns, such as oscilla
waves@6#, lamellar structures@7#, self-replicating spots@8#,
and others@9# are know to appear in chemical systems. A
most all these patterns have been found by chance. The
reason is that the theory of the reaction-diffusion system
still far from complete. Small amplitude patterns can be
scribed by the linear perturbation analysis of the syste
close to bifurcations of homogeneous stationary states@10#.
However, large amplitude patterns, which appear in ex
able, bistable, or oscillatory systems, have been obta
mainly in numerical simulations of corresponding reactio
diffusion equations. There are well-known theorems
Fisher@11#, Kolmogorov, Petrovsky, and Piskunov@12#, and
Kanel @13#, but they describe traveling fronts in one-variab
systems only. The theorem by Kanel was helpful in the c
struction of large amplitude stationary periodical structu
in at least three-variable reaction-diffusion systems provi
there was the possibility to separate time scales for e
variable@14,15#. The other approach of construction of st
tionary structures in one-dimensional~1D! and 2D two-
variable~activator-inhibitor! systems in an excitable regim
with one stationary state has also been considered@16–19#.

Large amplitude stationary periodical structures ha
been found numerically in 1D and 2D two-variable reactio
diffusion models in the excitable regime with three statio
ary states for periodic boundary conditions, provided t
there is a sufficiently large difference in diffusion coef
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cients@20,21#. They appear due to division and stopping o
traveling impulse. These results are very important, beca
every pattern observed in an-variable reaction-diffusion sys
tem can always be found in a (n11)-variable reaction-
diffusion system, but notvice versa. Recently, we have ex
plained in a qualitative way, reasons of the division and
stopping of a traveling impulse and found large amplitu
stationary periodical structures in a two-variable, on
dimensional model for zero-flux boundary conditions@22#.
Moreover, we have found that for various initial condition
different patterns may coexist in the same system. Each
tern exists in a limited interval in space. There are subin
vals on which subsequent patterns coexist. The numbe
the coexisting structures strongly increases with a size of
system. The coexistence of the large amplitude station
periodical structures in 1D systems is the crucial prope
which allows us to construct two-dimensional patterns w
desired forms. In order to illustrate possibilities of the cr
ation of various patterns in 2D systems we show in
present paper the large amplitude stationary patterns in
form of all capital letters. It is noteworthy, that the all capit
letters have been created in the same reaction-diffus
model. Each letter has been obtained in a system with ap
priate sizes as the result of local excitations of a homo
neous stationary state, which is stable to small perturbati
Some letters have been obtained by local excitations s
rated in time.

Our model consists of the following elementary, mon
molecular and bimolecular reactions~excluding autocataly-
sis! @22#:

S0

k1



k21

S, ~1!

S1E

k2



k22

SE, ~2!
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se

ib
r

c-

or

.
he

t

of
ll

n
o

T

o

this
m of

he
2D
a-

ac-

the
am-

re-
ble
table
ry

m-
f the
ous
hich

oth
tters
ed in

d

s;

ex-

n a
o

d
ical
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SE

k3

→E1P, ~3!

SE1S

k4



k24

S2E, ~4!

P1E

k5



k25

EP, ~5!

P1SE

k5



k25

SEP, ~6!

P1S2E

k5



k25

S2EP, ~7!

P1E8

k6



k26

E8P, ~8!

E8P

k7

→E81R, ~9!

P

k8

→Q. ~10!

In step~1! S0 is treated as the reservoir variable, who
concentration is maintained constant. The steps~2!–~7! de-
scribe a catalytic~enzymatic! reaction with the inhibition by
an excess of the reactantSand the productP. For simplicity
we assume that the rate constants in steps~5!–~7! are the
same, which is a reasonable assumption for allosteric inh
tion by the product. The productP is consumed by anothe
enzymatic reaction with the enzymeE8 producing inreactive
productR @steps~8! and ~9!#. It is assumed that these rea
tions occur in its saturation regime. Moreover,P is trans-
formed directly to some productQ in the step~10!. This
second enzymatic reaction allows the simplification of f
mulas for a nullcline for the product. Due to steps~1! and
~8!–~10!, the scheme describes an open chemical system

According to the mass action law, the behavior of t
system is described by ten kinetic equations forS, P, E, SE,
EP, S2E, SEP, S2EP, E8, andSE8. It is easy to see tha
E(t)1SE(t)1EP(t)1S2E(t)1S2EP5E0 and E8(t)
1E8P(t)5E08(t) are two first integrals, so the dynamics
the system is described by eight kinetic equations. Usua
total concentrations of the enzymes~catalysts! E0 as well as
E08 are much smaller than the concentrations of the reactaS
and the productP. In this case one can separate scales
time, in which the concentrations of the reagents change.
variablesE, SE, EP, S2E, SEP, S2EP, andE8 become fast
05620
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variables, whereasS andP are the slow ones. According t
the Tikhonov theorem@23#, the fast variables in a slow time
scale are equal to their quasistationary values and in
scale the dynamics can be described by a reduced syste
slow variables.

Assuming that diffusion coefficients for catalysts~en-
zymes! and all their complexes with the reactant and t
product are negligible, the dynamics of inhomogeneous
system is described by the following reaction-diffusion equ
tions:

]s

]t
2Ds

]2s

]x2 2Ds

]2s

]y25A12A2s2
s

~11s1A3s2!~11p!
,

~11!

]p

]t
2Dp

]2p

]x2 2Dp

]2p

]y25BS 2B12B2p

1
s

~11s1A3s2!~11p! D ,

~12!

wheres andp are dimensionless concentrations of the re
tant S and the productP, respectively,t, x, andy are dimen-
sionless time and space coordinates,Ds and Dp are dimen-
sionless diffusion coefficients, andA1 , A2 , A3 , B, B1, and
B2 are the parameters. In all calculations described in
present paper we assume the following values for the par
etersA150.01, A251024, A350.505, B50.625, B157.99
31023, andB254.6531025 and the diffusion coefficients
Ds51025 and Dp5531025. For the given values of the
parameters the homogeneous system is in an excitable
gime with three stationary states. One of them is a sta
node and the other ones are a saddle point and an uns
focus @22#. In the sequel we consider the initial-bounda
value~Fourier! problem with zero-flux~Neumann! boundary
conditions. In all calculations the same values of the para
eters have been used, but we have changed the sizes o
system and positions of local excitations of the homogene
stable stationary state. We assume that in all regions, w
are initially exciteds(0,x,y)520 andp(0,x,y)535. Outside
of excited regions the homogeneous stationary values of b
variables have been assumed as initial conditions. The le
shown in Fig. 1 have been generated for the data present
the Table I.Lx andLy denote the sizes of the rectangles inx
andy directions; ‘‘No.’’ numbers rectangular regions excite
initially ~without star! or with a time delay~with star!; xl and
yl denote position of the lower left apex of excited region
and l x and l y denote the sizes of excited rectangles inx and
y directions, respectively. The letters ‘‘A’’ and ‘‘F’’ have
been constructed in two steps. Initially the system was
cited in the given region and after some time~T! the next
excitation was introduced withs(T,x,y)540 andp(T,x,y)
535. The patterns obtained in the calculations have bee
little deformed ~squeezed or/and elongated in one or tw
dimensions! in order to get letters with proper height an
width. It is easy to check that our equations are symmetr
with respect to translations and reflections inx and y. If
2-2
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s(t,x,y) is a solution in a given system, then its mirror r
flection is also the solution. Owing to the zero-flux bounda
conditions, a given solution together with its mirror refle
tion is also the solution on the enlarged region. This prope
allows us to not only save computer time, but also to co
pose some letters from parts by mirror reflections along
or both space directions. It is evident that an initial, loc
excitation positioned symmetrically in a 2D system evolv
according to the initial symmetry and asymptotically gives
symmetrical pattern. An unsymmetrical initial disturban
with small asymmetry evolves asymptotically to a symme
pattern, whereas that with strong asymmetry sometim
gives unsymmetrical asymptotic patterns. We have assu
that a given pattern has an asymptotic form if the maxim
local changes ins(t,x,y) andp(t,x,y) appear at the 8th digi
at most and continue decreasing in time. It is noteworthy t
some letters may be generated in a few ways which me
with different sizes of the system and local excitations po
tioned in various places. Small changes in the size of
system as well as in places of initial excitations usually g
small differences in calculated values ofs(t,x,y) and do not
change the ‘‘geometry’’ of the pattern. However, if one si
of the system is close to the interval on which the 1D patt
becomes unstable, then in this case small changes o
sizes may give completely different asymptotic patterns. O
model is structurally stable, which means that there are
ficiently small changes of the right hand sides of the eq
tions as well as the diffusion coefficients, which do not cau
qualitative differences in asymptotic patterns. T
asymptotic values ofs(t,x,y) and p(t,x,y) change in the
ranges ~0.1–40! and ~8–30!, respectively. All letters are
formed from the asymptotic patterns by separation
asymptotic values ofs(t,x,y) into two regions. The regions
in the (x,y) plane in whichs(t,x,y) is higher or lower than
2 are marked in black. Not all of our letters have eleg
forms. Some of them are similar to scribble, but they
readable, especially when used in sets meaning words.
model should be treated as an example of an inhomogen
distributed chemical system in which various patterns m
appear. In real systems inhomogeneities may appear du
internal, local fluctuations. Such fluctuations can induce
spontaneous formation of large amplitude patterns. The
terns in the form of all capital letters may appear in vario
dynamical systems, provided that the necessary condit
are fulfilled. The properties of the translation and reflect
symmetries are satisfied in all nonlinear parabolic type p

FIG. 1. The set of asymptotic patterns generated in twenty
2D systems. The patterns have been obtained in the systems
different sizes and different initial conditions~see Table I!. The
patterns are a little deformed to give the letters with close he
and width. All letters are formed from the patterns by separation
asymptotic values ofs(t,x,y) into two regions with values ofs
higher or lower than 2. One of these two regions is marked in bla
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tial differential equations~reaction-diffusion systems! for the
Neumann boundary conditions. The particular prope
namely, the coexistence of stationary patterns, that is
dependence of asymptotic solutions on initial conditions
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TABLE I. Sizes of the system, number of excited regions, th
positions, and sizes.

Lx Ly No. xl yl l x l y

A 4.00 4.00 1 1.76 1.76 0.48 0.48
2* 1.60 0.00 0.88 0.80

B 2.80 4.28 1 1.28 0.00 0.24 0.60
2 1.28 3.64 0.24 0.60

C 1.52 3.04 1 1.40 1.28 0.24 0.48
D 3.44 3.04 1 1.48 1.44 0.48 0.48
E 4.24 1.60 1 1.56 0.00 0.32 0.48

2 2.56 0.00 0.32 0.48
F 2.00 4.00 1 1.76 1.76 0.24 0.24

2* 1.56 0.00 0.44 0.24
G 2.00 4.00 1 0.00 0.00 0.48 0.48

2 1.52 1.76 0.48 0.48
H 2.80 4.00 1 1.28 1.40 0.24 1.20
I 4.00 2.00 1 1.52 1.76 0.48 0.48

2 0.00 1.76 4.00 0.24
J 3.20 1.00 1 0.00 0.00 1.20 0.76

2 0.00 0.76 3.20 0.24
K 4.00 4.00 1 1.76 0.00 0.48 0.48

2 3.52 1.52 0.48 0.96
3 1.76 3.52 0.48 0.48

L 3.20 1.00 1 0.00 0.00 3.20 0.24
2 0.00 0.24 1.20 0.76

M 5.60 2.00 1 1.18 1.40 0.24 0.60
2 4.08 1.40 0.24 0.60

N 5.92 2.48 1 1.36 0.00 0.24 0.60
2 4.32 1.88 0.24 0.60

O 4.00 4.00 1 1.76 1.76 0.48 0.48
P 4.00 4.00 1 0.00 0.00 0.48 0.48

2 1.52 1.76 0.96 0.48
3 3.52 0.00 0.48 0.48

Q 4.00 4.00 1 1.76 1.52 0.48 0.96
2 3.52 0.00 0.48 0.48
3 3.32 3.52 0.48 0.48

R 4.65 3.04 1 1.36 1.36 0.32 0.32
2 4.36 1.36 0.16 0.32

S 2.48 5.92 1 0.00 1.36 0.60 0.24
2 1.88 4.32 0.60 0.24

T 3.20 2.00 1 0.00 0.00 3.20 0.24
2 0.00 0.24 1.20 1.52
3 0.00 1.76 3.20 0.24

U 2.80 2.00 1 1.28 0.00 0.24 0.60
V 5.00 5.00 1 0.00 0.00 0.24 0.24
W 5.60 2.00 1 1.18 0.00 0.24 0.60

2 4.08 0.00 0.24 0.60
X 3.44 3.44 1 1.60 1.60 0.24 0.24
Y 3.44 1.72 1 1.60 0.00 0.24 0.12
Z 2.48 5.92 1 0.00 4.32 0.60 0.24

2 1.88 1.36 0.60 0.24
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the crucial point. In the case of a two-variable system
generation of the large amplitude patterns and, as a co
quence, their coexistence is achieved due to a sufficie
large difference in the diffusion coefficients. For equal
very close diffusion coefficients an initial local excitatio
always evolves to the traveling impulse, that is, to the pu
of excitation running through the system with constant
locity. Of course, not only patterns in the form of the lette
are possible in our model. These patterns should be con
ered only as examples of the variety of asymptotic structu
possible in chemical systems. They are constructed in o
to convince the reader that rather simple, but nonlin
chemical systems are sufficiently rich to produce the des
patterns. Of course, much more important is a modeling
patterns observed in biological systems, especially in
differentiation processes, which seems to be governed by
positional information@24#. On the other hand, it does no
escape our notice that the possibility to create patterns in
form of the letters open new prospects for encoding inform
tion in chemical systems.

The model can be accomplished experimentally by t
hy

l

l.
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coupled enzymatic reactions proceeding in a 2D CFUR. O
of them should be a enzymatic~catalytic! reaction of
Michaelis-Menten type~Langmuir-Hinshelwood! with the
inhibition by an excess of its reactant and product, wher
the other one can be a simple enzymatic~catalytic! reaction.
Moreover, the values of the diffusion coefficients are reas
able for the diffusion transport of compounds in liquid or g
systems used in typical CFURs. The feed of a CFUR can
assured by step~1!, which describes the influx of the reacta
S from reservoirs through thex,y planes. Step~10! describes
the outflow of the productP to the reservoirs, in which its
concentration can be neglected. These assumptions are
sonable approximations, if the size of the CFUR in the
rection perpendicular to thex,y plane is so small that the
concentration gradients in this direction caused by the di
sion flows from the reservoirs can be neglected. It is no
worthy that our model is realistic in the sense that all
basic assumptions can be accomplished in real CFU
Therefore, we hope that our results will be a stimulus
experimentalists to look for the patterns discussed in
present paper in real systems.
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@15# J. Górski and A. L. Kawczyn´ski, Pol. J. Chem.59, 61 ~1985!.
@16# B. S. Kerner and V. V. Osipov, Sov. Phys. Usp.32, 101

~1989!.
@17# B. S. Kerner and V. V. Osipov, Sov. Phys. Usp.33, 679

~1990!.
@18# C. B. Muratov and V. V. Osipov, Phys. Rev. E53, 3101

~1996!.
@19# C. B. Muratov and V. V. Osipov, Phys. Rev. E54, 4860

~1996!.
@20# J. E. Pearson, Science261, 189 ~1993!.
@21# V. Petrov, S. K. Scott, and K. Showalter, Philos. Trans. R. S

London, Ser. A347, 631 ~1994!.
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