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Two-dimensional model of a reaction-diffusion system as a typewriter
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Pattern formation is a common phenomenon, which appears in biological systems, especially in cell differ-
entiation processes. The proper level for understanding the creation of patterns seems to be a physicochemical
description. The most fundamental models should be based on systems, in which only chemical reactions and
diffusion transport occugreaction-diffusion systemslin order to present a richness of patterns, we show here
the asymptotic patterns in the form of capital letters obtained in two-dimensional reaction-diffusion systems
with zero-flux boundary conditions. All capital letters are obtained in the same model, but initial conditions and
sizes of the systems are different for each letter. The chemical model consists of elementary reactions and is
realistic. It can be realized experimentally in continuous-flow unstirred reactor with an enzymatic reaction
allosterically inhibited by an excess of its reactant and product.
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In 1952 Alan Turing pointed out that reaction-diffusion cients[20,21]. They appear due to division and stopping of a
systems might be treated as minimal models of the pattertraveling impulse. These results are very important, because
formation in biological systemgl]. He showed that station- every pattern observed inravariable reaction-diffusion sys-
ary periodical distributions of variabldseactant concentra- tem can always be found in an¢ 1)-variable reaction-
tions) appeared as asymptotic solutions to nonlinear partiafliffusion system, but notice versa Recently, we have ex-
differential equations of the parabolic typéeaction- Plained in a qualitative way, reasons of the division and the
diffusion systems Almost forty years later the Turing pat- Stopping of a traveling impulse and found large amplitude
terns have been found in open, continuous-flow, unstirre§t@tionary periodical structures in a two-variable, one-
reactors CFUR), in which the chloride—iodide—malonic acid dimensional model for zero-flux boundary conditidi22].
reaction (CIMA) occurred[2,3]. Meantime target patterns Moreover, we have found that_ for various initial conditions
(traveling concentric rings[4] and spiral waveg5] have dlfferent petterne may eoeX|st in the same system. Eaclh pat-
been observed in the Belousov-Zhabotinggg) reaction in tern exists in a limited interval in space. T_here are subinter-
closed systems. Now, various patterns, such as oscillatin\flq]aIS on \.Nh.'Ch subsequent patterns coexist. _The n_umber of
waves[6], lamellar structure§7], self-replicating spotg], e coexisting structures strongly increases with a size of the

d otherd9 K ; " chemical ; Al system. The coexistence of the large amplitude stationary
and otherd9] are know to appear in chemical systems. " periodical structures in 1D systems is the crucial property,

most aII_these patterns have been fOL%”d b_y chence. The M3 hich allows us to construct two-dimensional patterns with
reason is that the theory of the reaction-diffusion systems igesjred forms. In order to illustrate possibilities of the cre-

stiII_ far from com_plete. Small amplitude patterns can be deution of various patterns in 2D systems we show in the
scribed by the linear perturbation analysis of the Systemsesent paper the large amplitude stationary patterns in the
close to bifurcations of homogeneous stationary S&I65 o of all capital letters. It is noteworthy, that the all capital
However, large amplitude patterns, which appear in exCitgters have been created in the same reaction-diffusion
able, bistable, or oscillatory systems, have been obtainegoqe|. Each letter has been obtained in a system with appro-
mainly in numerical simulations of corresponding reaction-priate sizes as the result of local excitations of a homoge-

diffusion equations. There are well-known theorems byheqys stationary state, which is stable to small perturbations.
Fisher[11], Kolmogorov, Petrovsky, and Piskunp¥2], and  gome Jetters have been obtained by local excitations sepa-
Kanel[13], but they describe traveling fronts in one-variable rated in time.

systems only. The theorem by Kanel was helpful in the con- 5,y model consists of the following elementary, mono-

struction of large amplitude stationary periodical structure§yglecular and bimolecular reactiofiexcluding autocataly-
in at least three-variable reaction-diffusion systems prowdegis) [22]:

there was the possibility to separate time scales for each

variable[14,15. The other approach of construction of sta- Ky

tionary structures in one-dimensionélD) and 2D two- .

variable (activator-inhibitoj systems in an excitable regime Sy S D
with one stationary state has also been considgtéd19. k_,

Large amplitude stationary periodical structures have

been found numerically in 1D and 2D two-variable reaction- ks,

diffusion models in the excitable regime with three station- N

ary states for periodic boundary conditions, provided that S+E™ SE 2
there is a sufficiently large difference in diffusion coeffi- k-2
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ks variables, whereaS and P are the slow ones. According to
the Tikhonov theorenm?23], the fast variables in a slow time

SE-E+P, (3) scale are equal to their quasistationary values and in this
K scale the dynamics can be described by a reduced system of
4 slow variables.
= Assuming that diffusion coefficients for catalysten-
SE+S E, 4 . .
K S @ zymes and all their complexes with the reactant and the
-4 product are negligible, the dynamics of inhomogeneous 2D
Ks system is described by the following reaction-diffusion equa-
tions:
P+E~ EP, (5
K_s asDaZ DaZAA s
gt saxZ Psgy? M RST s AL (14 p)’
Ks (1)
P+SE™ SEP, 6
3 (6) w o P
-5 07t DPW_Dpﬁ_yz_B —Bl—sz
ks . S
P+S,E ™ S,EP, (7) (1+s+Ass%)(1+p))’
Kos (12
ke wheres andp are dimensionless concentrations of the reac-
P+E' — E'P, (8  tantSand the produck, respectivelyt, x, andy are dimen-
K_g sionless time and space coordinateg,and D, are dimen-
sionless diffusion coefficients, am, A,, Az, B, B4, and
k, B, are the parameters. In all calculations described in the
, , present paper we assume the following values for the param-
E'P—E'+R, ©) etersA;=0.01, A,=10 *, A;=0.505,B=0.625, B,=7.99
K x 103, andB,=4.65x10"° and the diffusion coefficients
8

D= 10°5 and D »=5x10"°. For the given values of the
P—Q. (10 parameters the homogeneous system is in an excitable re-
gime with three stationary states. One of them is a stable
In step(1) Sy is treated as the reservoir variable, whosenode and the other ones are a saddle point and an unstable
concentration is maintained constant. The stéps(7) de-  focus [22]. In the sequel we consider the initial-boundary
scribe a catalyticenzymatig reaction with the inhibition by  value (Fouriep problem with zero-fluxNeumann boundary
an excess of the reactaB@nd the producP. For simplicity  conditions. In all calculations the same values of the param-
we assume that the rate constants in sté)s(7) are the eters have been used, but we have changed the sizes of the
same, which is a reasonable assumption for allosteric inhibisystem and positions of local excitations of the homogeneous
tion by the product. The produét is consumed by another stable stationary state. We assume that in all regions, which
enzymatic reaction with the enzyni€ producing inreactive  are initially exciteds(0,,y)=20 andp(0x,y) =35. Outside
productR [steps(8) and (9)]. It is assumed that these reac- of excited regions the homogeneous stationary values of both
tions occur in its saturation regime. Moreové¥,is trans-  variables have been assumed as initial conditions. The letters
formed directly to some produd® in the step(10). This  shown in Fig. 1 have been generated for the data presented in
second enzymatic reaction allows the simplification of for-the Table I.L, andL, denote the sizes of the rectanglesin
mulas for a nullcline for the product. Due to sted$ and  andy dlrectlons “No.” numbers rectangular regions excited
(8)-(10), the scheme describes an open chemical system. initially (without stay or with a time delaywith stap; x; and
According to the mass action law, the behavior of they, denote position of the lower left apex of excited regions;
system is described by ten kinetic equationsSpP, E, SE, andl, andl, denote the sizes of excited rectanglesiand
EP, S;E, SEP, S;EP, E’, andSE'. It is easy to see that y directions, respectively. The letters “A” and “F” have
E(t) +SEt) +EP(t) + S,E(1) +S;EP=E, and E'(t)  been constructed in two steps. Initially the system was ex-
+E'P(t)=E(t) are two first integrals, so the dynamics of cited in the given region and after some til® the next
the system is described by eight kinetic equations. Usuallyexcitation was introduced wite(T,x,y) =40 andp(T,X,y)
total concentrations of the enzym@stalyst$ E, as well as =35, The patterns obtained in the calculations have been a
E( are much smaller than the concentrations of the rea8antlittle deformed (squeezed or/and elongated in one or two
and the producP. In this case one can separate scales oflimension$ in order to get letters with proper height and
time, in which the concentrations of the reagents change. Theidth. It is easy to check that our equations are symmetrical
variablest, SE, EP, S,E, SEP, S;EP, andE’ become fast with respect to translations and reflectionsxrand y. If
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TABLE I. Sizes of the system, number of excited regions, their
positions, and sizes.

[OFDRSTUOWXVA

FIG. 1. The set of asymptotic patterns generated in twenty-six
2D systems. The patterns have been obtained in the systems withg
different sizes and different initial conditionsee Table ). The
patterns are a little deformed to give the letters with close height ¢
and width. All letters are formed from the patterns by separations of
asymptotic values oB(t,x,y) into two regions with values o$
higher or lower than 2. One of these two regions is marked in black.

s(t,x,y) is a solution in a given system, then its mirror re-
flection is also the solution. Owing to the zero-flux boundary g
conditions, a given solution together with its mirror reflec-
tion is also the solution on the enlarged region. This property
allows us to not only save computer time, but also to com- ,
pose some letters from parts by mirror reflections along one
or both space directions. It is evident that an initial, local |
excitation positioned symmetrically in a 2D system evolves
according to the initial symmetry and asymptotically gives a
symmetrical pattern. An unsymmetrical initial disturbance
with small asymmetry evolves asymptotically to a symmetric
pattern, whereas that with strong asymmetry sometimes
gives unsymmetrical asymptotic patterns. We have assumecl'
that a given pattern has an asymptotic form if the maximal
local changes is(t,X,y) andp(t,x,y) appear at the 8th digit

at most and continue decreasing in time. It is noteworthy that
some letters may be generated in a few ways which means
with different sizes of the system and local excitations posi-
tioned in various places. Small changes in the size of the
system as well as in places of initial excitations usually give
small differences in calculated valuessgt,x,y) and do not
change the “geometry” of the pattern. However, if one size

of the system is close to the interval on which the 1D pattern
becomes unstable, then in this case small changes of the
sizes may give completely different asymptotic patterns. Our
model is structurally stable, which means that there are suf-R
ficiently small changes of the right hand sides of the equa-
tions as well as the diffusion coefficients, which do not cause S
gualitative differences in asymptotic patterns. The
asymptotic values o8(t,x,y) and p(t,x,y) change in the
ranges(0.1-40Q and (8—30, respectively. All letters are
formed from the asymptotic patterns by separation of
asymptotic values of(t,x,y) into two regions. The regions

in the (x,y) plane in whichs(t,x,y) is higher or lower than Vv
2 are marked in black. Not all of our letters have elegant W
forms. Some of them are similar to scribble, but they are
readable, especially when used in sets meaning words. OurX
model should be treated as an example of an inhomogeneoud
distributed chemical system in which various patterns may <

Ly Ly No. X| Y Iy ly

4.00 4.00 1 1.76 1.76 0.48 0.48
2* 1.60 0.00 0.88 0.80

280 4.28 1 128 0.00 0.24 0.60
2 1.28 3.64 0.24 0.60

1.52 3.04 1 1.40 1.28 0.24 0.48
3.44 3.04 1 1.48 1.44 0.48 0.48
424 160 1 156 0.00 032 048
2 2.56 0.00 0.32 0.48

F 2.00 4.00 1 1.76 1.76 0.24 0.24
2* 1.56 0.00 0.44 0.24

2.00 4.00 1 0.00 0.00 0.48 0.48
2 1.52 1.76 0.48 0.48

2.80 4.00 1 1.28 1.40 0.24 1.20
4.00 2.00 1 152 176 048 0.48
2 0.00 1.76 4.00 0.24

3.20 1.00 1 0.00 0.00 1.20 0.76
2 0.00 076 320 024

4.00 4.00 1 1.76 0.00 048 0.48
2 3.52 1.52 0.48 0.96

3 1.76 352 048 048

3.20 1.00 1 0.00 0.00 3.20 0.24
2 0.00 0.24 1.20 0.76

5.60 2.00 1 1.18 1.40 0.24 0.60
2 4.08 1.40 0.24 0.60

5,92 248 1 136 0.00 0.24 0.60
2 4.32 1.88 0.24 0.60

4.00 4.00 1 1.76 1.76 0.48 0.48

4.00 4.00 1 0.00 000 048 048
2 1.52 1.76 0.96 0.48

3 3.52 0.00 0.48 0.48

4.00 4.00 1 176 152 048 0.96
2 3.52 0.00 0.48 0.48

3 3.32 3.52 0.48 0.48

465 3.04 1 136 136 032 0.32
2 4.36 1.36 0.16 0.32

248 592 1 0.00 136 060 0.24
2 1.88 4.32 0.60 0.24

3.20 2.00 1 0.00 0.00 3.20 0.24
2 0.00 024 120 152

3 0.00 176 320 0.24

2.80 2.00 1 1.28 0.00 0.24 0.60
5.00 5.00 1 0.00 000 024 024
5.60 2.00 1 1.18 0.00 0.24 0.60
2 4.08 0.00 0.24 0.60

3.44 3.44 1 1.60 1.60 0.24 0.24
3.44 1.72 1 1.60 0.00 0.24 0.12
2.48 5.92 1 0.00 4.32 0.60 0.24
2 1.88 1.36 0.60 0.24

appear. In real systems inhomogeneities may appear due to

internal, local fluctuations. Such fluctuations can induce thé
spontaneous formation of large amplitude patterns. The pat-

terns in the form of all capital letters may appear in varioustial differential equationgreaction-diffusion systemdor the

dynamical systems, provided that the necessary conditiondeumann boundary conditions. The particular property,
are fulfilled. The properties of the translation and reflectionnamely, the coexistence of stationary patterns, that is the
symmetries are satisfied in all nonlinear parabolic type pardependence of asymptotic solutions on initial conditions is
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the crucial point. In the case of a two-variable system thecoupled enzymatic reactions proceeding in a 2D CFUR. One
generation of the large amplitude patterns and, as a consef them should be a enzymati¢catalytio reaction of
guence, their coexistence is achieved due to a sufficientliichaelis-Menten type(Langmuir-Hinshelwood with the
large difference in the diffusion coefficients. For equal orinhibition by an excess of its reactant and product, whereas
very close diffusion coefficients an initial local excitation the other one can be a simple enzymétiatalytio reaction.
always evolves to the traveling impulse, that is, to the pulséMoreover, the values of the diffusion coefficients are reason-
of excitation running through the system with constant ve-able for the diffusion transport of compounds in liquid or gel
locity. Of course, not only patterns in the form of the letterssystems used in typical CFURs. The feed of a CFUR can be
are possible in our model. These patterns should be consi@ssured by stefl), which describes the influx of the reactant
ered only as examples of the variety of asymptotic structureS from reservoirs through they planes. Stef10) describes
possible in chemical systems. They are constructed in ordehe outflow of the producP to the reservoirs, in which its
to convince the reader that rather simple, but nonlineaconcentration can be neglected. These assumptions are rea-
chemical systems are sufficiently rich to produce the desiredonable approximations, if the size of the CFUR in the di-
patterns. Of course, much more important is a modeling ofection perpendicular to the,y plane is so small that the
patterns observed in biological systems, especially in celtoncentration gradients in this direction caused by the diffu-
differentiation processes, which seems to be governed by th&on flows from the reservoirs can be neglected. It is note-
positional information[24]. On the other hand, it does not worthy that our model is realistic in the sense that all its
escape our notice that the possibility to create patterns in thieasic assumptions can be accomplished in real CFURs.
form of the letters open new prospects for encoding informaTherefore, we hope that our results will be a stimulus for
tion in chemical systems. experimentalists to look for the patterns discussed in the
The model can be accomplished experimentally by twagpresent paper in real systems.
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